The theory of compression ignition engines

0-	4	4
L.O	nie	nts

1.1	Introdu	etion	5
	1.1.1	Historical	5
	1.1.2	Classifications	5
1.2	Two-str	oke and four-stroke engines	5
	1.2.1	Two-stroke engines	6
	1.2.2	Four-stroke engines	7
	1.2.3	Evaluation of power output of two-stroke	
		and four-stroke engines	7
	1.2.4	Other operating parameters	8
1.3	Air stan	dard cycles: constant pressure—constant	
		volume—dual combustion	9
	1.3.1	Theoretical expressions for air standard cycles	9
	1.3.2	Further comments on air standard cycles	13
1.4	Basic th	nermodynamics of real gases	14
	1.4.1	Gas properties	14
	1.4.2	Combustion	15
	1.4.3	Dissociation and reaction kinetics	17
1.5	Real die	esel engine cyclic processes	17
	1.5.1	Closed period	17
	1.5.2	Open period	19
1.6	Detailed	d cycle analysis methods	21
	1.6.1	Closed period	21
	1.6.2		22
	1.6.3	Completion of calculation sequence	25
Refere	ences		25

The theory of turbocharging

Con	tents						
2.1	Introduction		29	2.6		narger matching	59
2.2		urbocharging		2.6.1 2.6.2		Introduction Air flow characteristics of engine and	59
	2.2.1	Turbochargers for automotive diesel engines	30		2.6.3	turbocharger Matching for constant speed operation	61 62
	2.2.2	Small industrial and marine engine turbochargers	33		2.6.4	Matching the marine engine	63
	2.2.3	Large industrial and marine engine			2.6.5 2.6.6	Matching for diesel-electric traction Matching for other industrial duties	64 65
		turbochargers	34		2.6.7 2.6.8	Matching the four-stroke vehicle engine Matching the two-stroke vehicle engine	65 67
2.3	Turbocl 2.3.1	harger performance Compressor and turbine efficiency	35 35	2.7		s in ambient conditions	69
	2.3.2	Non-dimensional representation of compressor and turbine characteristics	37	2.1	2.7.1	Introduction	69
	2.3.3	Compressor performance	38		2.7.2	Operation under changing ambient conditions	69
	2.3.4	Turbine performance	38		2.7.3	Rematching to suit local ambient conditions	70
2.4		harging systems—principles	40			Conditions	10
	2.4.1 2.4.2	The energy in the exhaust system Principles of constant pressure	40	2.8	Closure		70
	2.4.3	turbocharging	41 44	Refere	ences		71
	2.4.3	Principles of pulse turbocharging Principles of pulse converter and other		Ackno	wledgen	nents	71
		turbocharging systems	53	Nome	nclature		71
2.5		air cooling	55				
	2.5.1 2.5.2	Charge cooling principles Charge air cooling and engine performance	55 57				

Compound and other engine systems

Con	tents	
3.1	Introduction	75
3.2	Gas generator and compound schemes compared with the turbocharged engine	75
3.3	Analysis of turbocharged and compound engine systems based on full cycle simulation 3.3.1 Analysis based on compression and expansion machines with fixed polytropic efficiencies of 85% and 80%, respectively 3.3.2 Analysis based on fully modelled system, including compressor, turbine and cooler characteristics	76 76 78
3.4	Other compounded or related engine schemes 3.4.1 The differential compound engine (DCE) 3.4.2 The differentially supercharged diesel engine (DDE)	81 81 83
3.5	Other turbocharged or pressure charging systems 3.5.1 Two-st=age turbocharging 3.5.2 Variable geometry turbocharging 3.5.3 The pressure wave supercharger	84 84 85 86

87

References

Diesel combustion and fuels

Cor	ntents		
4.1	Diesel	combustion	91
	4.1.1	Basic combustion theory	91
	4.1.2	Ignition delay	92
	4.1.3	Mixing controlled combustion	93
	4.1.4	Combustion system design	94
	4.1.5	Analysis of cylinder pressure data	96
4.2	Diesel	fuels	98
	4.2.1	Hydrocarbon types	98
	4.2.2	Petroleum-derived fuels	99
	4.2.3	Diesel fuel properties	100
	4.2.4	Diesel fuel quality issues	102
	4.2.5	Diesel fuel specifications	102
	4.2.6	Alternative fuels	103
Refe	rences		104

Thermal loading

_				
\sim		_		
	\sim 10		DIC	٠
	911		nts	٠

5.1	Introd	uction	107
5.2	Gross heat losses		
5.3	Predic	tion of local heat flows	107
5.4	Heat tı	ransfer at coolant side	109
	5.4.1	Stationary surfaces—cylinder head and	
		liner	109
	5.4.2	Moving components—pistons	112
	5.4.3	Establishing temperature maps	113
5.5	Therm	al stress	113
	5.5.1	Thermal stress failures	113
	5.5.2		113
	5.5.3	Strongbacked constructions	114
	5.5.4	Calculation of thermal stress	114
5.6	Limiti	ng conditions in operation	115
	5.6.1	To meet lubrication requirements	115
	5.6.2	For thermal strength	116
	5.6.3	Fuel injector	116
5.7	Design	ning to meet thermal requirements	116
	5.7.1	Cylinder head	116
	5.7.2	Cylinder liner	118
	5.7.3	Piston design	118
	5.7.4	Injector cooling	118
5.8	Measu	rement of local temperature gradients and	
		heat fluxes	119
	5.8.1	Fixed thermocouples	120
	5.8.2	Traversing thermocouples	120
	5.8.3	Hardness recovery methods	120
	5.8.4	Fusible plugs	120
5.9	Exhau	st valves and seats	120
Ackr	owledge	ments	120
Refe	rences		120

Thermodynamic mathematical modelling

Con	tents		
6.1	Introduction	127	
6.2	Fundamentals and the energy equation	127	
6.3	Gas properties	129	
6.4	Pipe flows, valves, throttles and flow restrictions	131	
6.5	Turbomachinery and charge air coolers	134	
6.6	The cylinder	137	
6.7	Injection and combustion	139	
6.8	Heal transfer and friction		
6.9	Model results and engine performance		
6.10	Transient modelling	145	
6.11	Other engine components 6.11.1 Turbomachinery 6.11.2 Control valves 6.11.3 Indirect injection and other fuelling methods 6.11.4 Two-stroke engines	146 146 147 147 148	
6.12	Energy equation, gas properties and combustion extensions	148	
6.13	Gas dynamics	149	
Refer	ences	151	

Computational fluid dynamics

7.1	Introdu	uction	155
7.2	Model	description	155
	7.2.1	Gas-phase modelling	155
	7.2.2	Liquid-phase modelling	156
	7 2.3	Ignition, combustion and emissions	159
7.3	Applic	ations	161
	7.3.1	Modelling the gas-exchange process	161
	7.3.2	Combustion and emissions model	
		validation	163
	7.3.3	Effect of multiple injections	166
	7.3.4	Use of CFD in engine design	168
7.4	Summ	ary and conclusions	168
Ackn	owledge	ments	169
Refer	ences		169
Nome	enclature		171

Modern control in diesel engine management

Cor	itents		
8.1	What i	s the purpose of control	175
	8.1.1		175
	8.1.2 8.1.3		175
		control	176
8.2	The co	ntext of engine control	179
8.3	What a	a control system does	179
	8.3.1	Sensors for control	181
	8.3.2	Actuators for control	182
8.4	Curren	t engine control technology	183
8.5	Algori	thms for control	183
	8.5.1	Predictors and filters	188
	8.5.2	The Future	188
	8.5.3	Modern control—an example	188
8.6	Design	ner's guide	189
	8.6.1	Developing control systems	189
	8.6.2	General comments about system	
		development	190
	8.6.3	Specifying functions	190

194

References

Inlet and exhaust systems

Cor	ntents		
9.1	Introdu	uction	201
9.2	Gas flo	ow	201
9.3	Four-s	troke engines	201
	9.3.1	Valve timings	202
	9.3.2	Valve areas	203
	9.3.3	Determination of flow coefficients	204
	9.3.4	Engine breathing demands	207
	9.3.5	Actual non-swirling port shapes	207
	9.3.6	Swirl producing ports	207
9.4	Turboo	charging	211
9.5	Two-st	troke engine scavenging	211
	9.5.1	Cross scavenging	211
	9.5.2	Loop scavenging	211
	9.5.3	Uniflow scavenging	212
	9.5.4	Port areas and timings	213
9.6	Silence	ers	214
Refe	rences		215

Design layout options

_		
^ -		4
	nte	1015

10.1	Introdu	ction	219
10.2	The bal	ancing of engines	219
	10.2.1	Consideration of the forces involved	219
	10.2.2	Balance of a single-cylinder engine	222
	10.2.3	Two-cylinder engines	224
	10.2.4	Four-cylinder in-line engines	225
	10.2.5	Three-cylinder engines	226
	10.2.6	Six-cylinder engines	227
	10.2.7	Vee engines	227
	10.2.8	Two-stroke engines	230
	10.2.9	Control of torque reaction	231
10.3	Torsion	al vibration	231
	10.3.1	Simple systems	231
	10.3.2		
		systems	235
	10.3.3		242
	10.3.4	Torsiographs and torsional vibration tests	245
10.4	General	design practice and use of materials	246
	10.4.1	Introduction	246
	10.4.2	The design process	246
	10.4.3	~ *	247
	10.4.4	Behaviour of materials under repeated	
		loads—fatigue	248
	10.4.5	Typical materials used in production	252
Refere	ences		260

Fuel injection systems

Co	nte	nts

11.1	Introduc	ction	263	11.3	Diesel f	uel injection systems—Robert Bosch	
						Corp.	280
11.2	Diesel f	uel injection systems—Lucas Diesel			11.3.1	Fuel-injection systems	280
		Systems	263		11.3.2	Fuel-injection techniques	280
	11.2.1	Compression ignition combustion			11.3.3	Pump-and-barrel assemblies (pumping	
		processes	263			elements)	282
	11.2.2	Formation of nitric oxide by lean	000		11.3.4	Standard PE in-line injection pumps	285
		combustion	266		11.3.5	PE in-line injection pumps for	
	11.2.3	Unburned hydrocarbons	266			alternative fuels	290
	11.2.4	Origins of noise in diesel combustion	0.05		11.3.6	In-line control sleeve fuel-injection	
		processes	267			pumps	291
	11.2.5	Particulate emissions	267		11.3.7	Electronic Diesel Control (EDC)	292
		Traditional jerk pump	268		11.3.8	Bosch—Single-plunger fuel-injection	
	11.2.7	Unit injectors	269			pumps	294
		DP rotary distributor pumps	269		11.3.9	Innovative fuel-injection systems	296
	11.2.9	Electronically controlled rotary pumps	070		11.3.10	Peripheral equipment for diesel	
	44.0.40	(EPIC)	272			fuel-injection systems	297
		Advanced rotary distributor pumps	273		11.3.11	Bosch—Distributor injection pumps VE	300
	11.2.11	Control of rate of injection with	054		D. 10		004
	11 0 10	conventional FIE	274	11.4		uel injection systems—Caterpillar Inc.	301
		Lubrication of fuel injection components	276		11.4.1	Caterpillar's hydraulically-actuated	
		Common rail systems	276			electronic unit injector (HEUI) fuel	000
		Integrated fuel injection systems	277		11.40	system	302
		Summary	279		11.4.2	Next generation: HEUI-B	304
	11.2.16	Acknowledgement	280	Refere	ences		304
				TICICIL			UUI

Lubrication and lubricating oils

12.1	Introdu	ction	309
12.2	Lubrica	iting oils	309
		Mineral oils	309
	12.2.2	Synthetic oils	310
12.3	Viscosi	ty—its significance in lubrication	310
	12.3.1	Viscosity and coefficient of friction	310
	12.3.2	Viscosity measurement and units	311
	12.3.3	Change in viscosity with temperature	
		and pressure	311
	12.3.4	Viscosity classification	311
	12.3.5	Low-temperature viscosity and ease of	
		starting	312
	12.3.6	Viscosity at running temperatures;	
		friction losses and oil consumption	313
12.4	Additiv	es	313
12.5	Oil dete	erioration	313
12.6	Operati	onal problems	315
	12.6.1	Piston deposits	315
	12.6.2	Engine wear	315
	12.6.3	Bearing corrosion	316
	12.6.4	Sludge	316
12.7	API cla	ssification	316
12.8	Engine	tests and associated specifications	316
	12.8.1	Engine test rating	323
12.9	Laborat	ory inspection tests	323
12.10	Spot tes	ots	326
Ackno	wledgen	nent	326
Refere	nces		327
Abbre	viations		327

Bearings and bearing metals

Con	tents		
13.1	Introduction		
13.2	Bearing 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.2.6 13.2.7 13.2.8	design Wall thickness Interference fit Locating tangs Free spread Loading on crankpin and main bearings Prediction of oil film thickness Grooving configuration Clearance	331 331 332 332 333 333 334 335
13.3	Bearing 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6 13.3.7 13.3.8 13.3.9		335 335 336 336 337 337 337 338 338 338
13.4	Slow-sp	eed engine crosshead bearings	339
13.5	Bearing 13.5.1 13.5.2 13.5.3 13.5.4 13.5.5 13.5.6 13.5.7 13.5.8 13.5.9	metals Fatigue strength Scuff resistance Wear resistance Cavitation erosion resistance Overlays White metals Copper-lead and lead-bronze alloys Aluminium-tin alloys Aluminium-silicon alloys	340 340 341 341 341 342 343 344 345
References			345

Pistons, rings and liners

^	-	_
1 · 0	nte	nte

14.1	Introdu	action	349
14.2	Pistons		349
	14.2.1	Introduction	349
	14.2.2	Piston loading	349
	14.2.3	Piston design	350
	14.2.4	Piston types	352
	14.2.5	Gudgeon pins	356
	14.2.6	Piston design analysis	357
14.3	Rings		358
	14.3.1	Introduction	358
	14.3.2	Ring design	359
	14.3.3	Ring types	360
	14.3.4	Ring packs	362
	14.3.5	Ring materials	362
	14.3.6	Ring coatings	363
	14.3.7	Oil consumption and blow-by	364
	14.3.8	Scuffing	364
	14.3.9	Ring research	364
14.4	Liners		365
	14.4.1	Introduction	365
	14.4.2	Dry liners	365
	14.4.3	Wet liners	366
	14.4.4	Liner shape and surface finish	366
	14.4.5	Material	366
	14.4.6	Bore polish	367
Refer	ences		368

Auxiliaries

15.1	Governo	ors and governor gear	373
	15.1.1		373
	15.1.2	Basic principles	373
	15.1.3	Basic governing terms	375
		Typical governors	376
	15.1.5	Application requirements and governor	
		selection	384
	15.1.6	Typical applications	385
	15.1.7		387
15.2	Starting	gear and starting aids	387
		Introduction	387
	15.2.2	Unaided cold starting ability	387
	15.2.3		
		ability	388
	15.2.4	Engine cranking requirements	389
	15.2.5	Methods of starting	390
	15.2.6	Starting aids	399
15.3	Heat exc	changers	402
	15.3.1	Introduction	402
	15.3.2	Operating conditions	403
	15.3.3	Water-cooled systems	403
	15.3.4	Evaporative systems	406
	15.3.5	Temperature control	406
	15.3.6	Air-cooled systems	407
	15.3.7	Heat transfer	408
	15.3.8	Construction and design	411
	15.3.9	Materials	420
	15.3.10	Corrosion	421
	15.3.11	Maintenance	421
	15.3.12	Water treatment	422
Refere	nces		422

Aircooled engines

Con	tents		
16.1	Introduc	ction	425
16.2	Design	features and functional aspects	427
	16.2.1	Crankcase	427
	16.2.2	Cylinder unit	427
	16.2.3	Heat exchangers	433
	16.2.4	Fan control	434
16.3	Cooling	g fan	435
	16.3.1	General aspects	435
	16.3.2	Layout and design of axial fans	435
	16.3.3	Stators	437
	16.3.4	Fan noise and its reduction	438
	16.3.5	Other design considerations	439
	16.3.6	Manufacturing considerations	440
16.4	Environ	imental aspects	440
	16.4.1	Exhaust emissions	440
	16.4.2	Engine noise	440
		Noise characteristics of aircooled	

Noise attenuation by secondary

engines

16.4.4

Applications

References and Bibliography

440

441

442

446

Crankcase explosions

Con	Contents					
17.1	Introduction	451				
17.2	Oil mist in crankcases	451				
17.3	Explosion effects	451				
17.4	Incidence of crankcase explosions	452				
17.5	Prevention of explosions	452				
17.6	Design aspects	452				
17.7	Explosion relief valves	452				
17.8	Crankcase monitoring systems	453				
17.9	Oil mist detectors 17.9.1 Graviner systems 17.9.2 Schaller Visatron systems 17.9.3 Location of sampling points	453 453 454 455				
17.10	Practical aspects	455				
Refere	ences	455				

Exhaust smoke, measurement and regulation

,011	ILEIII	.5	
0 1	0	1	

8.1	General considerations	461
8.2	Instrumentation 18.2.1 Comparators 18.2.2 Filter-soiling 'spot' meters 18.2.3 Opacimeters	461 461 462 462
8.3	Calibration and correlation of smokemeters	465
8.4	Optical system—spectral response	466
8.5	Opacimeter specifications	466
8.6	Visibility criterion—public objection	467
8.7	Test methods and procedures	468
8.8	Typical smoke regulations 18.8.1 Road vehicle applications 18.8.2 Regulations other than for road vehicles	470 470 470
8.9	Conclusions—future legislation	470
Refere	ences	470

Exhaust emissions

Con	tents		
19.1	Introdu	ction	473
19.2	Legisla	tion	473
	19.2.1	USA	473
	19.2.2	1	475
	19.2.3		475
	19.2.4	Concluding remarks	475
19.3	Analys		475
		Carbon dioxide	476
	19.3.2	Carbon monoxide	476
	19.3.3		476
	19.3.4	Hydrocarbons	477
	19.3.5	Oxygen	477
	19.3.6	Particulates	478
19.4		ion and control	478
	19.4.1		478
	19.4.2		479
	19.4.3	\mathcal{J}	479
	19.4.4	Nitrogen oxides	479
	19.4.5	Odour	480
	19.4.6	Particulates	480
19.5		lated emissions	481
	19.5.1	\boldsymbol{J}	481
	19.5.2	3 3	481
	19.5.3	1 3 3	
		hydrocarbons	481
	19.5.4	1 1	481
	19.5.5	Particle size	482
19.6	Conclu	sions	482
Appe	ndix		483
Bibliography			483

Engine noise

20.1	Introdu	ction	487
20.2	Theory	and definitions	487
	20.2.1	Amplitude	487
	20.2.2	Effect of distance on sound pressure level	487
	20.2.3		487
	20.2.4	Sound power level	488
	20.2.5	Addition and subtraction of sound sources	488
	20.2.6	Averaging decibel levels	489
	20.2.7	Calculating relative levels	489
	20.2.8	Weighting curves	489
	20.2.9	Noise dose level	490
20.3	Legisla	tion	490
	20.3.1	On-highway vehicles	490
	20.3.2	Off-highway machines	490
20.4	Measur	ement and analysis of noise	491
	20.4.1	Measurement environments	491
	20.4.2	Equipment	491
	20.4.3	Frequency analysis	492
	20.4.4	Tracking analysis	493
	20.4.5	Sound quality analysis	494
20.5	Noise c	haracteristics of diesel engines	494
	20.5.1	Engine overall noise levels	495
	20.5.2	Assessment of combustion noise	495
	20.5.3	Assessment of mechanical noise	497
	20.5.4	Engine radiated noise	497
	20.5.5	Vehicle and machine noise assessment	499
20.6	Method	ls for control of diesel engine noise	501
	20.6.1	Combustion noise	501
	20.6.2		502
	20.6.3	•	502
	20.6.4	Palliative treatments and enclosures	505
	20.6.5	Vehicle and machine refinement	506
20.7	Conclu	sion	506
Refer	ences		506
Biblio	Bibliography 50		506

Larger engine noise and vibration control

Contents	
21.1 Introduction	511
21.2 Noise	511
21.3 Vibration	512
References	519

Passenger car engines

^	-	_
1 · 0	nte	nte

Introdu	ction	525
Vehicle	specific requirements	530
	8	530
	· ·	530
		535
		540
22.3.4	Exhaust gas aftertreatment	541
22.3.5	Electronic control systems	543
Perform	nance and emissions characteristics	543
22.4.1	Power and torque	543
22.4.2	Fuel consumption	544
22.4.3	Exhaust emissions	545
22.4.4	Noise, vibration, and harshness (NVH)	547
Future o	developments	548
ences		551
	Vehicle Current 22.3.1 22.3.2 22.3.3 22.3.4 22.3.5 Perform 22.4.1 22.4.2 22.4.3 22.4.4 Future of	Performance and emissions characteristics 22.4.1 Power and torque 22.4.2 Fuel consumption 22.4.3 Exhaust emissions 22.4.4 Noise, vibration, and harshness (NVH) Future developments

Trucks and buses

Con	tents					
23.1		demands	555	23.9	Flywheel housing	565
		Size and physical constraints Weight	555 555	23.10	Geartrain	565
	23.1.3	Cost	555	23.11	Gear case and cover	566
		Durability and reliability Performance	555 555	00.10		500
		Fuel economy	555	23.12	Electronic control system 23.12.1 ECM	566 566
		Gaseous and noise emissions	556		23.12.1 ECM 23.12.2 Sensors	568
		Electronics	556		23.12.3 Interconnections and wiring	569
	23.1.9	Product support	556		23.12.4 Communications	569
23.2	Starting		556	23.13	Fuel injection system	570
	23.2.1	Cylinder block and head	556		23.13.1 Electronic fuel injection devices	570
23.3	Cylinde	r kit components	557		23.13.2 Fuel (transfer) pump	572
20.0		Pistons	557		23.13.3 Fuel lines	572
		Piston rings	558		23.13.4 Fuel filters	572
		Cylinder liner	558		23.13.5 Fuel heaters and coolers 23.13.6 Fuel and water separators	572 572
23.4	Connec	ting rod assembly	559	00.14		570
		Connecting rods and bearing caps	559	23.14	Air system	572 572
	23.4.2	Piston pin bearings and connecting			23.14.1 Turbocharger 23.14.2 Charge cooler	573 575
		rod-to-crankshaft bearings	559		23.14.2 Charge cooler 23.14.3 Intake and exhaust manifolds	576
23.5	Cranksł	naft assembly	559	22 15	Lubrication system	576
	23.5.1	Crankshaft	559	23.13	Lubrication system 23.15.1 Oil pump	576 576
		Crankshaft oil seals	560		23.15.2 Regulator	577
		Crankshaft main bearings	560		23.15.3 Relief valve	577
		Crankshaft pulley	560		23.15.4 Filters	577
	23.5.5	Crankshaft vibration damper	561		23.15.5 Oil cooler	577
23.6	Camsha	ıft assembly	561		23.15.6 Dipstick	577
	23.6.1		561		23.15.7 Oil pan	577
	23.6.2	Camshaft bearings and caps	561		23.15.8 Crankcase ventilation	577
	23.6.3	Camshaft drive gear	561		23.15.9 Oil quality	578
23.7	Overhea	ad components	561	23.16	Coolant system	578
		Valve train assembly	562		23.16.1 Coolant	578
	23.7.2	Rocker assemblies	563		23.16.2 Coolant filter and conditioner	578
	23.7.3	3	563		23.16.4 Thermostate	578
	23.7.4	Engine retarders	563		23.16.4 Thermostats	579
				579		
					23.17.1 Product overview	579

23.17.2 Caterpillar engines	579
23.17.3 Cummins engines	580
23.17.4 Detroit diesel engines	581
23.17.5 Mack engines	581
23.17.6 Mercedes-Benz engines	581
23.17.7 Navistar engines	582
23.17.8 VarityPerkins engines	582
23.17.9 Volvo engines	582
Bibliography	585

This page has been reformatted by Knovel to provide easier navigation.

Locomotives

24.1	Introduc	ction	589
24.2	Develop	oment trends	589
		Emissions	589
	24.2.2	Engine weight	592
	24.2.3	Reliability and durability	592
24.3	Engine	descriptions	593
		Caterpillar 3500	593
	24.3.2	Caterpillar 3600	593
	24.3.3	Dalian 240 ZD	593
	24 3.4	General Electric 7FDL™	597
	24.3.5	General Electric 7HDL™	598
	24.3.6	General Motors EMD 645 and 710	598
	24.3.7	General Motors EMD H engine	598
	24.3.8	Kolomna D 49	601
	24.3.9	MTU/DDC 4000 series	603
	24.3.10	Paxman VP 185	603
	24.3.11	Pielstick PA4 200 VG	605
	24.3.12	Pielstick PA6B	607
	24.3.13	Ruston RK215	609
24.4	Summar	ry of engine design features and future	
		trends	609
24.5	Railcar		609
	24.5.1	Cummins	611
	24.5.2	MAN	611
	24.5.3		611
	24.5.4	Niigata	611
Ackno	wledgen	nents	611
References			611
Further reading 6			612

Dual fuel engines

\sim		nts
	nto	nto

25.1	What is	s a dual fuel engine?	615
25.2	Combu	stion in dual fuel engines	615
25.3		operties and their effects	615
	25.3.1	Heat value of a stoichiometric mixture	
		volume	615
	25.3.2	· - /	615
	25.3.3	Anti-detonation properties	615
	25.3.4	Pre-ignition tendency	616
	25.3.5		616
25.4	Combu	stion system	617
	25.4.1	The 'conventional' dual fuel engine	619
	25.4.2	The 'low NOx' dual fuel engine	619
	25.4.3	The 'gas diesel' engine	621
	25.4.4	Other combustion systems	622
25.5	Air-fue	l ratio control systems	626
		Intake throttle	626
	25.5.2	Exhaust by-pass	626
	25.5.3	V 1	626
25.6	Safety	systems	626
25.7	Applica	ations	628
	25.7.1	Automotive	628
	25.7.2	Locomotive	629
	25.7.3	Stationary (power generation and	
		mechanical drive)	629
	25.7.4	Marine and offshore	629
Refer	ences		629
Biblio	ography		630

Marine engine applications

26.1	High sp	633	
	26.1.1	Caterpillar	633
	26.1.2	Cummins	634
	26.1.3	Deutz MWM	634
	26.1.4	GMT	635
	26.1.5	Isotta Fraschini	637
	26.1.6	MAN B&W Holeby	637
	26.1.7	Mitsubishi	640
	26.1.8	MTU	640
	26.1.9	MTU/DDC designs	644
	26.1.10	Niigata	647
	26.1.11	Paxman	647
	26.1.12	SEMT-Pielstick	651
	26.1.13	Wärtsilä diesel	652
	26.1.14	Automotive-derived engines	655
26.2	Low spe	eed engines	655
	26.2.1	Introduction	655
	26.2.2	Intelligent engines	658

Condition monitoring

27.1	Introduction	667
27.2	A typical condition monitoring system	667
27.3	Instrumentation for condition monitoring 27.3.1 Vibration monitoring 27.3.2 Temperature measurements	667 668 668
27.4	Instrumentation for condition monitoring indirect methods	669
27.5	Fuel monitoring	670
27.6	Exhaust emissions	670
27.7	Conclusion	670
Refere	ences	670