CONTENTS

ix

	Preface	xvi
	Commonly Used Symbols, Subscripts, and Abbreviations	xxii
Chapter 1	Engine Types and Their Operation	1
1.1	Introduction and Historical Perspective	
1.2	Engine Classifications	
1.3	Engine Operating Cycles	9
1.4	Engine Components	12
1.5	Spark-Ignition Engine Operation	1:
1.6	Examples of Spark-Ignition Engines	19
1.7	Compression-Ignition Engine Operation	2:
1.8	Examples of Diesel Engines	2: 3: 3:
1.9	Stratified-Charge Engines	3
Chapter 2	Engine Design and Operating Parameters	42
2.1	Important Engine Characteristics	4:
2.2	Geometrical Properties of Reciprocating Engines	4:
2.3	Brake Torque and Power	4:
2.4	Indicated Work Per Cycle	4
2.5	Mechanical Efficiency	4
2.6	Road-Load Power	49
2.7	Mean Effective Pressure	50
2.8	Specific Fuel Consumption and Efficiency	5
2.9	Air/Fuel and Fuel/Air Ratios	5

2.10	Volumetric Efficiency	53	Chanter 5	Ideal Models of Engine Cycles	161
2.11	Engine Specific Weight and Specific Volume	54		Introduction	161
2.12	•	54	5.1 5.2	Ideal Models of Engine Processes	162
2.13	Specific Emissions and Emissions Index	56	5.2 5.3	Thermodynamic Relations for Engine Processes	164
2.14	Relationships between Performance Parameters	56	• • • •	Cycle Analysis with Ideal Gas Working Fluid with c_p and c_p	104
2.15	Engine Design and Performance Data	57	5.4		169
				Constant	169
-				5.4.1 Constant-Volume Cycle	
Chapter 3	Thermochemistry of Fuel-Air Mixtures	62		5.4.2 Limited- and Constant-Pressure Cycles	172
3.1	Characterization of Flames	62		5.4.3 Cycle Comparison	173
3.2	Ideal Gas Model	64	5.5	Fuel-Air Cycle Analysis	177
3.3	Composition of Air and Fuels	64	•	5.5.1 SI Engine Cycle Simulation	178
3.4	Combustion Stoichiometry	68		5.5.2 CI Engine Cycle Simulation	180
3.5	The First Law of Thermodynamics and Combustion	72		5.5.3 Results of Cycle Calculations	181
5.5	3.5.1 Energy and Enthalpy Balances	72	5.6	Overexpanded Engine Cycles	183
	3.5.2 Enthalpies of Formation	76	5.7	Availability Analysis of Engine Processes	186
	3.5.3 Heating Values	78		5.7.1 Availability Relationships	186
	3.5.4 Adiabatic Combustion Processes	80		5.7.2 Entropy Changes in Ideal Cycles	188
				5.7.3 Availability Analysis of Ideal Cycles	189
2.6	3.5.5 Combustion Efficiency of an Internal Combustion Engine	81		5.7.4 Effect of Equivalence Ratio	192
3.6	The Second Law of Thermodynamics Applied to Combustion	83	5.8	Comparison with Real Engine Cycles	193
	3.6.1 Entropy	83			
	3.6.2 Maximum Work from an Internal Combustion	00	Chapter 6	Gas Exchange Processes	205
	Engine and Efficiency	83	6.1	Inlet and Exhaust Processes in the Four-Stroke Cycle	206
3.7	Chemically Reacting Gas Mixtures	85	6.2	Volumetric Efficiency	209
	3.7.1 Chemical Equilibrium	86	0.2	6.2.1 Quasi-Static Effects	209
	3.7.2 Chemical Reaction Rates	92		6.2.2 Combined Quasi-Static and Dynamic Effects	212
		0 0		6.2.3 Variation with Speed, and Valve Area, Lift, and Timing	216
Chapter 4	Properties of Working Fluids	100	6.3	Flow Through Valves	220
-	-		0.5	6.3.1 Poppet Valve Geometry and Timing	220
4.1	Introduction	100		6.3.2 Flow Rate and Discharge Coefficients	225
4.2	Unburned Mixture Composition	102	6.4	Residual Gas Fraction	230
4.3	Gas Property Relationships	107	6.5	Exhaust Gas Flow Rate and Temperature Variation	231
4.4	A Simple Analytic Ideal Gas Model	109	6.6	Scavenging in Two-Stroke Cycle Engines	235
4.5	Thermodynamic Charts	112	0.0	6.6.1 Two-Stroke Engine Configurations	235
	4.5.1 Unburned Mixture Charts	112	- "	6.6.2 Scavenging Parameters and Models	237
	4.5.2 Burned Mixture Charts	116		6.6.3 Actual Scavenging Processes	240
	4.5.3 Relation between Unburned and Burned		6.7	Flow Through Ports	245
	Mixture Charts	123	6.7		
4.6	Tables of Properties and Composition	127	6.8	Supercharging and Turbocharging	248
4.7	Computer Routines for Property and Composition Calculations	130		6.8.1 Methods of Power Boosting	248
	4.7.1 Unburned Mixtures	130		6.8.2 Basic Relationships	249
	4.7.2 Burned Mixtures	135		6.8.3 Compressors	255
4.8	Transport Properties	141		6.8.4 Turbines	263
4.9	Exhaust Gas Composition	145		6.8.5 Wave-Compression Devices	270
	4.9.1 Species Concentration Data	145	4		
	4.9.2 Equivalence Ratio Determination from Exhaust		Chapter 7	SI Engine Fuel Metering and Manifold	
	Gas Constituents	148		Phenomena	279
	4.9.3 Effects of Fuel/Air Ratio Nonuniformity	152	7.1	Spark-Ignition Engine Mixture Requirements	279
	4.9.4 Combustion Inefficiency	154	7.2	Carburetors	282

	7.2.1 Carburetor Fundamentals	282		9.6.2 Knock Fundamentals	457
7.1	7.2.2 Modern Carburetor Design	285		9.6.3 Fuel Factors	470
7.3	Fuel-Injection Systems	294			4
·	7.3.1 Multipoint Port Injection	294 ·	Chapter 10	Combustion in Compression-Ignition Engines	491
. 7.4	7.3.2 Single-Point Throttle-Body Injection	299	10.1	Essential Features of Process	491
7.4	Feedback Systems	301	10.2	Types of Diesel Combustion Systems	493
7.5	Flow Past Throttle Plate	304	10.2	10.2.1 Direct-Injection Systems	493
7.6	Flow in Intake Manifolds	308		10.2.2 Indirect-Injection Systems	494
	7.6.1 Design Requirements	308		10.2.3 Comparison of Different Combustion Systems	495
	7.6.2 Air-Flow Phenomena	309	10.3	Phenomenological Model of Compression-Ignition Engine	473
	7.6.3 Fuel-Flow Phenomena	314	10.5	Combustion	497
				10.3.1 Photographic Studies of Engine Combustion	497
Chapter 8	Charge Motion within the Cylinder	326		10.3.2 Combustion in Direct-Injection, Multispray Systems	503
8.1	Intake Jet Flow	326		10.3.3 Application of Model to Other Combustion Systems	506
8.2	Mean Velocity and Turbulence Characteristics	330	10.4	Analysis of Cylinder Pressure Data	508
	8.2.1 Definitions	330	10	10.4.1 Combustion Efficiency	509
	8.2.2 Application to Engine Velocity Data	336		10.4.2 Direct-Injection Engines	509
8.3	Swirl	342		10.4.3 Indirect-Injection Engines	514
	8.3.1 Swirl Measurement	343	10.5	Fuel Spray Behavior	517
	8.3.2 Swirl Generation during Induction	345		10.5.1 Fuel Injection	517
	8.3.3 Swirl Modification within the Cylinder	349		10.5.2 Overall Spray Structure	522
8.4	Squish	353		10.5.3 Atomization	525
8.5	Prechamber Engine Flows	357		10.5.4 Spray Penetration	529
8.6	Crevice Flows and Blowby	360		10.5.5 Droplet Size Distribution	532
8.7	Flows Generated by Piston-Cylinder Wall Interaction	365		10.5.6 Spray Evaporation	535
•			10.6	Ignition Delay	539
Chapter 9	Combustion in Spark-Ignition Engines	371		10.6.1 Definition and Discussion	539
_	- 0			10.6.2 Fuel Ignition Quality	541
9.1	Essential Features of Process	371		10.6.3 Autoignition Fundamentals	542
9.2	Thermodynamic Analysis of SI Engine Combustion	376		10.6.4 Physical Factors Affecting Delay	546
	9.2.1 Burned and Unburned Mixture States	376		10.6.5 Effect of Fuel Properties	550
	9.2.2 Analysis of Cylinder Pressure Data	383		10.6.6 Correlations for Ignition Delay in Engines	` 553
0.2	9.2.3 Combustion Process Characterization	389	10.7	Mixing-Controlled Combustion	555
9.3	Flame Structure and Speed	390		10.7.1 Background	555
	9.3.1 Experimental Observations	390		10.7.2 Spray and Flame Structure	555
	9.3.2 Flame Structure	395		10.7.3 Fuel-Air Mixing and Burning Rates	558
	9.3.3 Laminar Burning Speeds	402			
9.4	9.3.4 Flame Propagation Relations	406	Chapter 11	Pollutant Formation and Control	567
9.4	Cyclic Variations in Combustion, Partial Burning, and Misfire	413	-		
	9.4.1 Observations and Definitions	413	11.1	Nature and Extent of Problem	567
	9.4.2 Causes of Cycle-by-Cycle and Cylinder-to-Cylinder	440	11.2	Nitrogen Oxides	572
	Variations	419		11.2.1 Kinetics of NO Formation	572
0.5	9.4.3 Partial Burning, Misfire, and Engine Stability	424		11.2.2 Formation of NO ₂	577
9.5	Spark Ignition	427		11.2.3 NO Formation in Spark-Ignition Engines	578
	9.5.1 Ignition Fundamentals	427		11.2.4 NO _x Formation in Compression-Ignition Engines	586
	9.5.2 Conventional Ignition Systems	437	11.3	Carbon Monoxide	592
9.6	9.5.3 Alternative Ignition Approaches	443	11.4	Unburned Hydrocarbon Emissions	596
9.0	Abnormal Combustion: Knock and Surface Ignition 9.6.1 Description of Phenomena	450 450		11.4.1 Background	596 500

CONTENTS XIII

	11.4.3 HC Emissions from Spark-Ignition Engines	601		13.3.1 Lubricated Friction	71
	11.4.4 Hydrocarbon Emission Mechanisms in Diesel Engines	620		13.3.2 Turbulent Dissipation	71
11.5	Particulate Emissions	626		13.3.3 Total Friction	71
	11.5.1 Spark-Ignition Engine Particulates	626	13.4	Measurement Methods	71
	11.5.2 Characteristics of Diesel Particulates	626	13.5	Engine Friction Data	72
	11.5.3 Particulate Distribution within the Cylinder	631		13.5.1 SI Engines	72
	11.5.4 Soot Formation Fundamentals	635		13.5.2 Diesel Engines	72
	11.5.5 Soot Oxidation	642	13.6	Engine Friction Components	72
	11.5.6 Adsorption and Condensation	646		13.6.1 Motored Engine Breakdown Tests	72
11.6	Exhaust Gas Treatment	648		13.6.2 Pumping Friction	72
	11.6.1 Available Options	648		13.6.3 Piston Assembly Friction	72
¥	11.6.2 Catalytic Converters	649	•	13.6.4 Crankshaft Bearing Friction	73
	11.6.3 Thermal Reactors	657		13.6.5 Valve Train Friction	73
	11.6.4 Particulate Traps	659	13.7	Accessory Power Requirements	73
	11.0.1 I at tioniano 11apo	00)	13.8	Lubrication	74
CI . 40	T	č.c0		13.8.1 Lubrication System	74
Chapter 12	Engine Heat Transfer	668		13.8.2 Lubricant Requirements	74
12.1	Importance of Heat Transfer	668			, ,
12.2	Modes of Heat Transfer	670			
	12.2.1 Conduction	670	Chapter 14	Modeling Real Engine Flow and Combustion	
	12.2.2 Convection	670	Janpos 2.	Processes	74
	12.2.3 Radiation	671			
	12.2.4 Overall Heat-Transfer Process	671	14.1	Purpose and Classification of Models	74
12.3	Heat Transfer and Engine Energy Balance	673	14.2	Governing Equations for Open Thermodynamic System	75
12.4	Convective Heat Transfer	676		14.2.1 Conservation of Mass	75
	12.4.1 Dimensional Analysis	676		14.2.2 Conservation of Energy	75
	12.4.2 Correlations for Time-Averaged Heat Flux	677	14.3	Intake and Exhaust Flow Models	75
	12.4.3 Correlations for Instantaneous Spatial			14.3.1 Background	75
	Average Coefficients	678		14.3.2 Quasi-Steady Flow Models	75
	12.4.4 Correlations for Instantaneous Local Coefficients	681		14.3.3 Filling and Emptying Methods	75
	12.4.5 Intake and Exhaust System Heat Transfer	682		14.3.4 Gas Dynamic Models	75
12.5	Radiative Heat Transfer	683	14.4	Thermodynamic-Based In-Cylinder Models	76
	12.5.1 Radiation from Gases	683		14.4.1 Background and Overall Model Structure	76
	12.5.2 Flame Radiation	684		14.4.2 Spark-Ignition Engine Models	76
	12.5.3 Prediction Formulas	688		14.4.3 Direct-Injection Engine Models	77
12.6	Measurements of Instantaneous Heat-Transfer Rates	689		14.4.4 Prechamber Engine Models	78
12.0	12.6.1 Measurement Methods	689		14.4.5 Multicylinder and Complex Engine System Models	78
	12.6.2 Spark-Ignition Engine Measurements	690	1	14.4.6 Second Law Analysis of Engine Processes	79:
	12.6.3 Diesel Engine Measurements	692	14.5	Fluid-Mechanic-Based Multidimensional Models	79
	12.6.4 Evaluation of Heat-Transfer Correlations	694		14.5.1 Basic Approach and Governing Equations	79
	12.6.5 Boundary-Layer Behavior	697		14.5.2 Turbulence Models	80
12.7	Thermal Loading and Component Temperatures	698		14.5.3 Numerical Methodology	80
12.7	12.7.1 Component Temperature Distributions	698	-	14.5.4 Flow Field Predictions	80
	12.7.2 Effect of Engine Variables	701	~1	14.5.5 Fuel Spray Modeling	81:
	12.7.2 Effect of Engine Variables	701		14.5.6 Combustion Modeling	81
Chapter 13	Engine Friction and Lubrication	712		e e	
•			Chapter 15	Engine Operating Characteristics	823
13.1	Background	712	-	• •	
13.2	Definitions	714	15.1	Engine Performance Parameters	82:
13.3	Friction Fundamentals	715	15.2	Indicated and Brake Power and MEP	824

xvi contents

15.3	Operating Variables That Affect SI Engine Performance,	
	Efficiency, and Emissions	827
	15.3.1 Spark Timing	827
	15.3.2 Mixture Composition	829
	15.3.3 Load and Speed	839
	15.3.4 Compression Ratio	841
15.4	SI Engine Combustion Chamber Design	844
	15.4.1 Design Objectives and Options	844
	15.4.2 Factors That Control Combustion	846
	15.4.3 Factors That Control Performance	850
	15.4.4 Chamber Octane Requirement	852
	15.4.5 Chamber Optimization Strategy	857
15.5	Variables That Affect CI Engine Performance, Efficiency, and	
	Emissions	858
	15.5.1 Load and Speed	. 858
	15.5.2 Fuel-Injection Parameters	863
	15.5.3 Air Swirl and Bowl-in-Piston Design	866
15.6	Supercharged and Turbocharged Engine Performance	869
	15.6.1 Four-Stroke Cycle SI Engines	869
	15.6.2 Four-Stroke Cycle CI Engines	874
	15.6.3 Two-Stroke Cycle SI Engines	881
	15.6.4 Two-Stroke Cycle CI Engines	883
15.7	Engine Performance Summary	886
	A	
	Appendixes	
Α	Unit Conversion Factors	899
В	Ideal Gas Relationships	902
	B.1 Ideal Gas Law	902
	B.2 The Mole	903
	B.3 Thermodynamic Properties	903
	B.4 Mixtures of Ideal Gases	905
. C	Equations for Fluid Flow through a Restriction	906
	C.1 Liquid Flow	907
	C.2 Gas Flow	907
D	Data on Working Fluids	911
In	dex	917
***	wen.	